中子输运方程固定源基准题

以下收集了几十个固定源基准题,包括题的几何,材料以及FISH0.4的计算结果。对某些问题比较了 OSG 方法和 SGS 方法的计算时间。

Fish0.4 固定源问题验证

1d

单单元反射边界

  • 几何
    gmsh1d1e
  • 材料

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res1d1e

单区域反射边界

  • 几何
    gmsh1d1r
  • 材料

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res1d1r

单区真空边界

  • 几何
    gmsh1d1rvac
  • 材料

    1
    2
    3
    sigma_t = 5.0
    sigma_s = 2.0
    source = 3.0
  • 结果
    res1d1rvac

两区反射边界

  • 几何
    gmsh1d2rref

  • 材料

材料1

1
2
3
sigma_t = 5.0
sigma_s = 2.0
source = 3.0

材料2

1
2
3
sigma_t = 5.0
sigma_s = 2.0
source = 0.0
  • 结果
    res1d2rref

解析问题1:强吸收问题

  • 几何
    gmsh1dasa

  • 材料

材料1

1
2
3
sigma_t = 5.0
sigma_s = 0.0
source = 1.0

材料2

1
2
3
sigma_t = 5.0
sigma_s = 0.0
source = 0.0
  • 结果
    res1dasa

解析问题2:内真空问题

  • 几何
    gmsh1daiv

  • 材料

材料1

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 1.0

材料2

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 0.0
  • 结果
    res1daiv

Reed cell 基准题

  • 几何
    gmsh1drc

  • 材料

材料1

1
2
3
sigma_t = 50.0
sigma_s = 0.0
source = 50.0

材料2

1
2
3
sigma_t = 5.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料4

1
2
3
sigma_t = 1.0
sigma_s = 0.9
source = 1.0

材料5

1
2
3
sigma_t = 1.0
sigma_s = 0.0
source = 0.0
  • 结果
    res1drc

2d

单单元反射边界

  • 几何
    gmsh2d1e

  • 材料

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res2d1e

单区域反射边界

  • 几何
    gmsh2d1rref

  • 材料

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res2d1rref

两区域反射边界

  • 几何
    gmsh2d2rref

  • 材料

材料1

1
2
3
sigma_t = 1.0
sigma_s = 0.5
source = 1.0

材料2

1
2
3
sigma_t = 1.0
sigma_s = 0.25
source = 0.0

  • 结果

res2d2rref

两区域真空边界

  • 几何
    gmsh2d2rvac

  • 材料

材料1

1
2
3
sigma_t = 0.5
sigma_s = 0.4
source = 1.0

材料2

1
2
3
sigma_t = 0.5
sigma_s = 0.4
source = 0.0

  • 结果

res2d2rvac

  • 计算时间
    网格量 1200 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P1 0.57s 51 0.07s 34
P3 0.33s 43 0.31s 34
P5 0.78s 43 1.55s 35
P7 1.86s 44 5.94s 36
P9 4.37s 43 18.95s 36
P11 7.72s 41 43.83s 36
P13 15.00s 41 98.17s 36
P15 26.47s 40 184.7s 34

reed cell基准题

  • 几何
    gmsh2drc

  • 材料

材料1

1
2
3
sigma_t = 50.0
sigma_s = 0.0
source = 50.0

材料2

1
2
3
sigma_t = 5.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料4

1
2
3
sigma_t = 1.0
sigma_s = 0.9
source = 1.0

材料5

1
2
3
sigma_t = 1.0
sigma_s = 0.0
source = 0.0
  • 结果
    res2drc

  • 计算时间
    网格量 1926 meshs,计算时间如下
    | Pn order | OSG计算时间 | OSG 迭代次数 | SGS 计算时间 | SGS 迭代次数 |
    | :——- | :———–|:———- |:———– |:————|
    | P1 | 1.02s | 416 | 0.57s | 451 |
    | P3 | 2.42s | 417 | 6.52s | 1061 |
    | P5 | 4.89s | 417 | 28.0s | 1318 |
    | P7 | 11.81s | 464 | 61.7s | 1190 |
    | P9 | 48.00s | 1000($10^{-4}$) | - | - |

内真空问题 (Maynard 强散射基准题)

  • 几何
    gmsh2d3riv

  • 材料

材料1

1
2
3
sigma_t = 0.2
sigma_s = 0.19
source = 1.0

材料2

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.2
sigma_s = 0.19
source = 0.0

  • 结果

res2d3riv

该问题计算到 P9 时达到最大迭代次数 1000, 收敛到$ 10^{-3}$,更高阶的计算不收敛。 Pn 方法存在一定的问题。

  • 计算时间
    网格量 4400 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P1 2.23s 736 4.43s 1577
P3 9.72s 829 38.42s 2638
P5 22.92s 823 140.4s 2887
P7 48.41s 818 365.0s 3151
P9 92.24s 1000($10^{-3}$) - -

直管道问题

  • 几何
    gmsh2dsdiv

  • 材料

材料1

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 1.0

材料2

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 0.0

  • 结果

res2dsdiv

  • 计算时间
    网格量 3300 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P1 0.92s 272 0.75 384
P3 2.90s 292 5.58 488
P5 7.91s 393 25.04s 682
P7 23.61s 451 83.88s 730
P9 78.24s 1000($10^{-3}$) - -

弯管道问题

  • 几何
    gmsh2dcdiv

  • 材料

材料1

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 1.0

材料2

1
2
3
sigma_t = 0.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.5
sigma_s = 0.0
source = 0.0

  • 结果

res2dcdiv

  • 计算时间
    网格量 2700 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P1 0.79s 237 0.46s 309
P3 2.20s 291 3.48s 380
P5 5.81s 357 15.64s 407
P7 14.51s 406 44.30s 419
P9 57.22s 1000($10^{-4}$) - -

铁水屏蔽问题 (深穿透问题)

  • 几何
    gmsh2diws

  • 材料

材料1

1
2
3
sigma_t = 3.33
sigma_s = 0.01998
source = 1.0

材料2

1
2
3
sigma_t = 3.33
sigma_s = 0.01998
source = 0.0

材料3

1
2
3
sigma_t = 1.33
sigma_s = 0.22477
source = 0.0

  • 结果

res2diws

  • 计算时间
    网格量 10000 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P5 4.01s 5 10.74s 6

强吸收问题

  • 几何
    gmsh2dsap

  • 材料

材料1

1
2
3
sigma_t = 1000.0
sigma_s = 0.0
source = 1000.0

材料2

1
2
3
sigma_t = 1000.0
sigma_s = 0.0
source = 0.0

材料3

1
2
3
sigma_t = 0.1
sigma_s = 0.0
source = 0.0

  • 结果

res2dsap

  • 计算时间
    网格量 2586 meshs,计算时间如下
Pn order OSG计算时间 OSG 迭代次数 SGS 计算时间 SGS 迭代次数
P1 1.75s 158 0.48s 134
P3 1.42s 164 1.21s 135
P5 2.48s 144 5.84s 132
P7 5.56s 124 20.11s 126
P9 10.08s 120 46.79s 117
P11 31.08s 119 107.8s 109
P13 47.6s 118 232.3s 103
P15 67.51s 119 461.5s 98

3d

单单元反射边界

  • 几何
    gmsh3d1e

  • 材料1

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 材料1

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res3d1eref

单区域反射边界

  • 几何

gmsh3d1rref

  • 材料

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 结果

    1
    scalar_flux = source/(sigma_t - sigma_s) = 2.0

res3d1rref

两区域反射边界

  • 几何

gmsh3d2rref

  • 材料1

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 1.0
    sigma_s = 0.5
    source = 0.0
  • 结果

res3d2rref

kobayashi 1i

  • 几何

gmshKobayashi1i

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 1.0e-4
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 0.0
  • 结果

resKobayashi1i

kobayashi 1ii

  • 几何

gmshKobayashi1i

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 0.0
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 0.0
  • 结果

resKobayashi1ii

kobayashi 2i

  • 几何

gmshKobayashi2

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 1.0e-4
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 0.0
  • 结果

resKobayashi2i

kobayashi 2ii

  • 几何

gmshKobayashi2

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 0.0
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 0.0
  • 结果

resKobayashi2ii

kobayashi 3i

  • 几何

gmshkobayashi3

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 1.0e-4
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.0
    source = 0.0
  • 结果

reskobayashi3i

kobayashi 3ii

  • 几何

gmshKobayashi3

  • 材料1

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 1.0
  • 材料2

    1
    2
    3
    sigma_t = 0.0
    sigma_s = 0.0
    source = 0.0
  • 材料3

    1
    2
    3
    sigma_t = 0.1
    sigma_s = 0.05
    source = 0.0
  • 结果

reskobayashi3ii